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Design and Implementation of a Nine-Axis Inertial
Measurement Unit

Pei-Chun Lin, Member, IEEE, Jau-Ching Lu, Chia-Hung Tsai, and Chi-Wei Ho

Abstract—A nine-axis inertial measurement unit (IMU) that uti-
lizes three-axis angular velocity measurements from rate gyro-
scopes and six-axis linear acceleration measurements from three
two-axis accelerometers is reported. This system can derive linear
acceleration, angular acceleration, and angular velocity via simple
memoryless matrix operations, and eliminates the requirement for
accelerometer installation at the center of mass as in the traditional
IMU. An optimal configuration of the system is proposed based on
the analysis of rigid body dynamics and matrix theory. In this con-
figuration, the computed angular acceleration is free of the gravity
effect as well. Analyses of sensor position and orientation errors
are reported. Experimental validation was executed to evaluate the
performance of the system.

Index Terms—Accelerometer, body state, gyroscope, inertial
measurement unit (IMU).

I. INTRODUCTION

FOR several decades, inertial sensors [1] have been one
of the important categories of sensors utilized in various

applications, including navigation (robots [2], [3] and vehi-
cles [4], [5]), state estimation for motion analysis [6], [7] or
dynamic modeling, motion control [8]–[11], microsurgery [12],
rehabilitation [13]–[15], and avoiding sports injury [16], [17].
In modeling dynamics of the legged robots [18], [19], infor-
mation about external forces, position, and orientation states
(including their first and second derivatives) is usually required
as essential information for constructing second-order dynamic
models, and inertial sensors are appropriate choices to provide
some essential information about these states. Traditionally, a
standard inertial measurement unit (IMU) composed of a three-
axis accelerometer installed at center of mass (COM) and a
three-axis rate gyroscope (hereafter referred to as the “gyro”)
readily provide measurements of linear acceleration and angu-
lar velocity, accordingly. Though full position/orientation state
can be reconstructed by models and filter technologies such
as the Kalman filter, such systems usually yield poor perfor-
mance and generate unbounded integration errors due to the

Manuscript received October 25, 2010; revised December 15, 2010; accepted
January 7, 2011. Recommended by Technical Editor D. Sun. This work was
supported in part by the National Science Council (NSC), Taiwan, under Con-
tract NSC 97-2221-E-002-208-MY3. This paper was presented in part at the
IEEE International Conference on Robotics and Automation, Kobe, Japan, May
2009.

P.-C. Lin, J.-C. Lu, and C.-H. Tsai are with the Department of Mechani-
cal Engineering, National Taiwan University, Taipei 10617, Taiwan (e-mail:
peichunlin@ntu.edu.tw).

C.-W. Ho was with the Department of Mechanical Engineering, National
Taiwan University, Taipei 10617, Taiwan. He is now with the Department of
Automation Development, HTC, Taoyuan 330, Taiwan.

Digital Object Identifier 10.1109/TMECH.2011.2111378

nature of their unobservability [19]. Thus, techniques of fus-
ing IMU with other positioning sensors (GPS [20], magneto-
compass [21], laser [22], and vision system [23]) are widely
adapted. While linear displacement, velocity, and acceleration,
as well as orientation and angular velocity, can all be measured
by commercially available sensors, the only immeasurable is
angular acceleration. Though this information can be derived
by differentiation of gyro signals, it is usually noisy. Therefore,
besides improving the performance of the gyros and associated
data acquisition systems, searching for new techniques that are
capable of yielding reliable and accurate angular acceleration
states plays a nontrivial role in the development of IMUs.

In rigid body dynamics, linear accelerations of any two points
on the body, as well as angular acceleration and angular velocity
of the body, are related to a specific mathematical equation based
on the Newton mechanics. Since the linear acceleration and the
angular velocity can be measured directly by the accelerometers
and the gyros, the angular acceleration can readily be derived by
utilizing these measurements together with the Newtonian equa-
tion. For decades, researchers have evaluated various methods in
an attempt to recover all three states via a minimum set of sen-
sors together with specific computational algorithms. Among
all of these, development of accelerometer-based systems is
one widely adopted method. Padgaonkar et al. [24] proposed a
nine-axis acceleration measurement system capable of deriving
bounded linear and angular acceleration but with limited angular
velocity information. Chen et al. [25] proposed a novel six-axis
system that shifted the unavoidable integration computation to
linear acceleration; thus, the bounded angular acceleration can
be derived. Genin et al. [26] reported angular velocity deter-
mination from accelerometer measurements. Angeles et al. [27]
proposed various nice body state estimation methods from point
acceleration measurements. Parsa et al. [28] developed an all-
accelerometer IMU that requires 12 one-axis accelerometers
mounted at distinct and specific locations on the surfaces of a
cube, and the system is capable of deriving all nine unknown
scalar states. Recently, with the advanced development in mi-
croelectrical mechanical systems (MEMSs), multiaxis MEMS
inertial sensors have become commercially available and low
cost, yet with promising performance.1 Particularly, the appear-
ances of the MEMS gyros, which readily provide an angular
velocity state, eliminate the inverse of quadratic computations
required in all-accelerometer IMUs. This motivates us to revisit
the question of how to select, place, and orient inertial sensors
in order to yield better performance and feasible solutions for
practical implementation.

1For example, Analog Devices, Inc., Freescale Semiconductor, VTI Tech-
nologies, Measurement Specialties, Inc./Schaevitz, and STMicroelectronics all
produce three-axis MEMS accelerometers. InvenSense and STMicroelectronics
produce three-axis MEMS gyroscopes.
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Fig. 1. Acceleration of a point p in an accelerating body frame B is determined
by the position vector from the origin of B to p and the states of the body frame
B with respect to the inertial frame W .

Here, we investigate a nine-axis IMU containing three-axis
angular velocity measurements from the gyros and six-axis lin-
ear acceleration measurements from the accelerometers posi-
tioned at three distinct locations. This nine-axis IMU provides
angular acceleration derivation via memoryless linear opera-
tion, unlike the differentiation process utilized in the traditional
IMU, which requires a sequence of data with high sampling
rate. The flexible positioning of three two-axis accelerometers
in the system obviates the strong constraint of accelerometer
installation at COM as in the traditional IMU. The use of a
three-axis gyro readily provides angular velocity that eliminates
the procedure of deriving the state from its quadratic forms as in
an all-accelerometer IMU [29]. In addition, the angular velocity
and acceleration derived by the system are both free of gravity
effect as well.

Section II introduces the idea of this nine-axis sensory sys-
tem based on an analysis of rigid body dynamics, followed
by Section III, which describes the positioning of sensors in
detail. Section IV presents an analysis of sensor position and
orientation error. Section V reports the results of experimental
evaluation, and Section VI concludes the paper.

II. CONSTRUCTION OF THE SENSING SYSTEM

As shown in Fig. 1, the acceleration vector ap of a point p
rigidly attached to an accelerating body frame B with origin o in
the inertial frame W is a function of the body’s angular velocity
ω, angular acceleration ω̇, and linear acceleration of the body
origin ao , given by

ap = ao + ω̇ × rop + ω × (ω × rop) (1)

where rop , the fixed position vector of point p relative to o, is pre-
sumed known a priori. In general, we are interested in utilizing
the measurements from commercially available accelerometers
and gyros to derive nine unknown scalar body states on the right
side of the equation, including the COM linear acceleration
aCOM (usually equal to the origin of body frame ao )

ao = aCOM = [ax ay az ]T (2a)

and the angular acceleration and velocity

ω̇ = [ ω̇x ω̇y ω̇z ]T (2b)

ω = [ωx ωy ωz ]T . (2c)

A quadratic representation of angular velocity ω6 is also
defined as

ω6(ω) =
[
ω2

x + ω2
y ω2

x + ω2
z ω2

y + ω2
z ωxωy

ωxωz ωyωz

]T
. (2d)

The ith one-axis gyro installed on the body measures the
projected angular velocity of spatial body motion, ωi , along the
sensing direction ŝg i

bωi = ωT · ŝg i (3a)

where the sensed motion is with respect to the inertial frame,
but the coordinates are represented in the body frame (i.e., letter
“b” on the upper left corner of the state). Likewise, the jth one-
axis accelerometer installed at point p on the body measures the
projected linear acceleration along the sensing direction ŝa j

baj = aT
p · ŝa j

= (ao + ω̇ × rop + ω × (ω × rop))T · ŝa j . (3b)

Here, the gravity-induced acceleration is presumably com-
pensated for the measurement of the accelerometer.

Since the position vector rop and the sensing direction ŝg i or
ŝa j are invariant with respect to the body frame B in a general
strapdown IMU, it motivates us to express the coordinates of
dynamic equation (1) in the body frame at every instance

bap − bω × (bω × brop) = bao + bω̇ × brop (4)

while the measured states of the moving rigid body are still with
respect to the initial frame. Note that in the following content,
all the equations will be expressed in the body coordinates, and
all instances of notation “b” will be omitted for clear equation
presentations.

Presumably, we have six one-axis gravity-compensated linear
acceleration measurements from the accelerometers

am = [a1 a2 a3 a4 a5 a6 ]T (5a)

and three one-axis angular velocity measurements from the gy-
ros

ωm = [ω1 ω2 ω3 ]T (5b)

with known sensor positions and orientations ŝg i or ŝa j on the
body; six scalar versions of (4) can be constructed and the left
side of (4) is known. Consequently, the remaining six unknown
acceleration states on the right side

xvar = [aT
o ω̇ T ]T = [ ax ay az ω̇x ω̇y ω̇z ]T (6)

with respect to the inertial frame can be derived by simple linear
computation. This procedure completes the computation of the
desired body state that we will proceed to detail.

Without loss of generality, we can arrange the sensing direc-
tions of three one-axis gyros, ŝg i i=1,2,3 , aligned with three
principal axes of the body frame B

ŝg 1 = [ 1 0 0 ]T ŝg 2 = [ 0 1 0 ]T

ŝg 3 = [ 0 0 1 ]T . (7)
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Fig. 2. Three different arrangements of six one-axis acceleration measure-
ments. (a) Six one-axis measurements at six distinct locations. (b) Three two-
axis measurements at three distinct locations. (c) Two three-axis measurements
at two distinct locations.

In this arrangement, output of the gyros readily represents
one of the desired body states: angular velocity

ω = ωm (8)

and the coordinates are expressed in the body frame. The direct
measurement of angular velocity from readings of gyros obvi-
ates the quadratic computation and equation solving in real-time
operation as in the all-accelerometer system in which this state
is, in general, treated as unknown.

By using a similar strategy, six one-axis accelerometers can
be oriented to measure the linear accelerations am along with
the three principal axes of body frame B as well, with each
axis having two measurements for symmetric considerations.
Instead of the inner product computations described in (3a) and
(3b), computation in the current settings only requires selecting
one out of three scalar components of the dynamic equation, as
shown in (4).

Now, the question becomes how to place these six one-axis
accelerometers so that the remaining unknown state xvar can be
derived successfully. Without loss of generality, assume that: 1)
the locations of six one-axis accelerometers are defined by six
position vectors

r = [ r1 r2 r3 r4 r5 r6 ]

rj = [ rjx rjy rjz ]Tj = 1−6 (9)

where rj behaves the same as rop defined in (4), and 2) the
sensing directions of these six sensors are alongside x, y, z, x,
y, and z principal axes of the body frame B, respectively [as
shown in Fig. 2(a)]. Thus, the left side of (4) can be readily
computed with sensor measurements am and ωm

qj = aj − (ωm × (ωm × rj ))T · êk j=1–6,k=x,y ,z ,x,y ,z

q = [ q1 q2 q3 q4 q5 q6 ]T = am − W(r)ω6(ωm )

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3
a4
a5
a6

⎤

⎥
⎥
⎥
⎥
⎥
⎦
−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 −r1x r1y r1z 0
0 −r2y 0 r2x 0 r2z

−r3z 0 0 0 r3x r3y

0 0 −r4x r4y r4z 0
0 −r5y 0 r5x 0 r5z

−r6z 0 0 0 r6x r6y

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω2
1 +ω2

2

ω2
1 +ω2

3

ω2
2 +ω2

3

ω1ω2

ω1ω3

ω2ω3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(10)

The multiplication of W(r) and ω6(ωm ) is the reorganized form
of double cross products between angular velocity and position
vectors in which the gyro measurement ωm is represented by
the 6 × 1 vector with quadratic representation defined in (2d).

By importing the equations defined in (10) into (4), the linear
system of equations can be represented as

q = am − W(r)ω6(ωm ) = S(r)xvar (11)

where S(r) is the 6 × 6 matrix

S(r) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 r1z −r1y

0 1 0 −r2z 0 r2x

0 0 1 r3y −r3x 0
1 0 0 0 r4z −r4y

0 1 0 −r5z 0 r5x

0 0 1 r6y −r6x 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (12)

Thus, the unknown acceleration states can be derived by the
matrix operation as follows:

xvar = S(r)−1(am − W(r)ω6(ωm )) (13)

and this equation reveals that the extraction of the desired ac-
celeration data xvar now hinges upon the rank and numerical
condition of the “structure matrix” S(r) that is solely a function
of positions of accelerometers r. Since the positions are known
and fixed in the body coordinates, the following task relies on
adequate allocation of accelerometers.

III. SENSOR ALLOCATION

The rise of MEMS sensing technology has yielded commer-
cially available low-cost MEMS accelerometers with better per-
formance, lower prices, and smaller packaging than those of
a decade ago. More importantly, the availability of multiaxis
accelerometers significantly simplifies the original complicated
electronic and spatial design of multisensor systems for mul-
tiaxis state measurements. Therefore, the spatial allocations of
the six one-axis acceleration measurements presented in this
paper can be categorized into three different scenarios: 1) two
one-axis accelerometers (two rj s) positioned at two distinct lo-
cations; 2) three one-axis accelerometers (three rj s) positioned
at three distinct locations; and 3) six one-axis accelerometers
(six rj s) positioned at six distinct locations. We will discuss
these cases separately and focus on the invertibility of the struc-
ture matrices S(r) and their numerical conditions detailed as
follows.

A. System With Two Three-Axis Acceleration Measurements

The general spatial configuration of a system with two three-
axis acceleration measurements is depicted in Fig. 2(c), where
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six position vectors are combined with two distinct position vec-
tors r1 (=r2=r3) and r4 (= r5=r6), containing measurements
of [ a1 a2 a3 ]T and [ a4 a5 a6 ]T accordingly.

The corresponding structure matrix S2×3(r) is

S2×3(r) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 r1z −r1y

0 1 0 −r1z 0 r1x

0 0 1 r1y −r1x 0
1 0 0 0 r4z −r4y

0 1 0 −r4z 0 r4x

0 0 1 r4y −r4x 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (14a)

In this case, the structure matrix S2×3(r) is composed of two
copies of the dynamic equation, as shown in (4). For each copy
(upper/lower three rows), the first 3 × 3 identity matrix cor-
responds to the computation of the COM linear acceleration,
and the second 3 × 3 skew-symmetric matrix represents the
cross product between the position vector and the angular ac-
celeration vector. Unfortunately, the determinant of the structure
matrix S2×3(r) is always 0, which indicates that the matrix is
not invertible and implies that the desired acceleration state xvar
cannot be derived in this configuration. Apparently, six scalar
position variables in r1 and r4 are not sufficient to construct six
independent vectors in the structure matrix.

B. System With Three Two-Axis Acceleration Measurements

By following similar logic to that presented in the previous
section, the general spatial configuration of a system with three
two-axis acceleration measurements is depicted in Fig. 2(b),
where three distinct position vectors r1 (=r2), r3 (=r4), and r5

(=r6) contain measurements of [ a1 a2 ]T , [ a3 a4 ]T , and
[ a5 a6 ]T , respectively. In the following development, the
three positions are referred as positions I, II, and III, accord-
ingly.

The corresponding structure matrix S3×2(r) is

S3×2(r) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 r1z −r1y

0 1 0 −r1z 0 r1x

0 0 1 r3y −r3x 0
1 0 0 0 r3z −r3y

0 1 0 −r5z 0 r5x

0 0 1 r5y −r5x 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(14b)

which is a function of nine scalar position variables. In this sce-
nario, the matrix is composed of three copies of two differently
selected scalar components of the spatial dynamic equation, as
shown in (4). The determinant of this nine-variable structure
matrix S3×2(r) can be organized as

det(S3×2(r)) = −(r1x − r5x)(r5y − r3y )(r3z − r1z )

− (r5x − r3x)(r3y − r1y )(r1z − r5z ) (15)

and this indicates that the arrangement of sensor positions is
crucial in order to avoid singularity of the structure matrix.
Geometrically, by considering a triangle formed by the relative
position vectors of sensor positions, as shown in Fig. 3, the
six terms in (15) represent the components of vectors r13 , r35 ,
and r51 projected on the yz, xy, and zx planes, respectively.
Various positioning configurations of accelerometers can make
the determinant of S3×2(r) zero. For example, the positions of
the three sensors have the same x, y, or z components—i.e., the

Fig. 3. Geometrical representation of the six vector components appearing in
the determinant of the structure matrix (scenario: system with three two-axis
accelerometers).

Fig. 4. Configuration of the systems with the best conditioned structure ma-
trices. (a) System with three two-axis measurements at three distinct locations
(referred as positions I, II, and III, respectively). (b) System with six one-axis
measurements at six distinct locations.

plane composed by the positions of the three sensors (hereafter
referred to as the “sensor plane”) is parallel to the xy, yz, or
zx plane (referred as “sensing plane,” the plane spanned by
the directions of two sensing vectors at each location). More
generally, no matter what the orientations of principal axes are,
this phenomenon is also true as long as the sensor plane is
parallel to one of three sensing planes.

The condition number of the matrix further indicates the qual-
ity of the inversion. The singular values are determined by high-
order polynomials (in the entries of the sensor positions r) that
are harder to analyze symbolically, but intuitively, the condition
number is very sensitive to the “shape” and “magnitude” of the
sensor positions relative to each other and their locations relative
to the COM. Not surprisingly, the condition number is invariant
to rotations of the sensor positions around the COM; hence, the
general behavior of condition number versus sensor position can
be investigated numerically by moving sensor positions spatially
with respect to the current body coordinates. Most likely, the
optimal condition occurs when sensors are placed with respect
to the COM in certain geometric symmetries. In practice, nu-
merical exploration suggests that the configuration of the three
two-axis accelerometers system, as shown in Fig. 4(a), yields
the best condition number 2, while the length scale l is located
between 0.5–1. Interestingly, because the structure matrix S(r)
combines entries both with and without physical scale in the
same rows—“1” in the first 3×3 identity matrix is dimension-
less, and the second 3×3 skew-symmetric matrix has a unit of
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“length”—it turns out that there is actually a preferred linear di-
mension of this system at which the resulting condition number
is optimal. For example, a physical installation of sensors with
l = 10 cm should use “decimeter” as the unit that sets l = 1,
not centimeter (l = 10) or meter (l = 0.1) that yield large con-
dition numbers 20 and 10, respectively. The condition number
of the matrix is determined purely by the relative magnitudes
of its matrix elements, thus choosing the right unit so that the
magnitudes of the elements close to the optimum condition will
reduce the additional error induced by the matrix inversion.

C. System With Six One-Axis Acceleration Measurements

This most general case has been described in Section II and
is depicted in Fig. 2(a). The structure matrix of this scenario
shown in (12) is a function of 12 scalar position variables. The
determinant of structure matrix S(r) contains 16 terms, but is not
as constructive as S3×2(r), as shown in Section III-B. Numerical
exploration reveals that the configuration, as shown in Fig. 4(b),
yields a perfect condition number of 1 when the length scale l
is set to 1.

The system in this configuration requires six sets of sensor
modules positioned on both sides of three principal axes with
equal distances, and this increases the complexity of the space
layout as well as both electronic and mechanical designs. In
addition, the possible orientation installation error of these one-
axis accelerometers most likely counteracts the advantage of
the perfect structure matrix inversion, thus keeping noise levels
the same. Therefore, in the following sections, we focus on the
analysis of the system with three two-axis accelerometers, as
described in Section III-B, which requires half sets of sensor
modules comparing to the current arrangement.

IV. ANALYSIS OF SENSOR POSITION

AND ORIENTATION ERRORS

Equation (1) or (13) reveals that the performance of the state
derivation depends not only on the sensor readings, but also
on the position and the orientation of the sensors. Therefore,
an analysis of the sensor installation error is discussed in this
section.

A. Nominal Condition

Equation (8) reveals that the desired angular velocity state is
solely determined by the readings from gyros, and (13) reveals
that the desired linear and angular acceleration states are deter-
mined by both accelerometer and gyro readings as well as the
positions of accelerometers. Assuming that S3×2(r) shown in
(14b) and W(r) shown in (10) with the best configuration, as
depicted in Fig. 4(a), are denoted as S3×2(rbest) and W(rbest),
the quantitative relation between the acceleration outputs and
the sensor inputs of the nine-axis IMU is

xvar = S3×2(rbest)−1(am − W(rbest)ω6(ωm ))
⎡

⎢
⎢
⎢
⎢
⎢
⎣

ax

ay

az

ω̇x

ω̇y

ω̇z

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m 0 0 m 0 0
0 m 0 0 m 0
0 0 m 0 0 m
n n n −n −n −n
−n −n n n n −n
n −n n −n n −n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
a3
a4
a5
a6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 −1 −1 0
0 0 0 1 0 1
0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω2
1 + ω2

2

ω2
1 + ω2

3

ω2
2 + ω2

3
ω1ω2
ω1ω3
ω2ω3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

where m = 0.5 and n = 0.25. Since the optimal configuration
is symmetric with respect to the three principal axes, similar
composition of the three components of the state is expected,
and (16) confirms this expectation. The difference in sign results
from the position of these three sensory suites relative to the
three principal axes and the assignments of sensing directions
that are all toward positive directions of the principal axes, as
shown in Fig. 4(a).

The sensing directions of the accelerometers { a1 a4 },
{ a2 a5 }, and { a3 a6 } are toward the x, y, and z princi-
pal axes of the body frame, respectively. Equation (16) shows
that in addition to gyro’s effect, the linear acceleration ai, i=x,y ,z ,
is only affected by the accelerometers measuring in the same
direction, and these two readings affect the measurement of ai

equally with scaling factor m = 0.5, like the “average” process.
On the other hand, (16) shows that the angular acceleration
ω̇i,i=x,y ,z is affected by all accelerometer measurements, and
the effect of each individual accelerometer to ω̇i is down to a
quarter, n = 0.25. Interestingly, the derivation of the angular
acceleration from accelerometer measurements shown in (16) is
in some sense like a differential process, which means that two
accelerometer measurements in the same sensing direction will
be multiplied by constants with the same magnitude but with
different signs before addition. For example, in the derivation of
ω̇x , the first three measurements aj, j=1,2,3 , are multiplied by n,
but the other three measurements aj, j=4,5,6 , are multiplied by
−n. This is true for ω̇i in all three directions. Because the ac-
celerometers with the same sensing direction are affected by the
same amount of gravity-induced acceleration, the differential
process indeed cancels the gravity-induced portions no matter
what the reading is. Therefore, the derivation of the angular
acceleration in the proposed system is indeed free of gravity ef-
fect. The system yields the correct angular acceleration even if
the accelerometers do not go through the gravity compensation
process.

Equation (17) shown next describes the detailed relation be-
tween accelerometer readings and body state under the current
optimized configuration

am = S3×2(rbest)[aT
COM ω̇ T ]T + W(rbest)ω6(ω). (17)

If the measurements from accelerometers and gyros are correct,
it is clear that the xvar yields the desired acceleration states by
inserting (17) into (16).

B. Sensor With Position Error

In practical implementation, unperfected installation might
induce sensor positioning error. A rigid moving body has uni-
form angular velocity, so positioning of the gyro is not crucial.
On the other hand, (1) shows that the positions of the accelerom-
eters affect the sensor readings unless the moving body lacks
rotational motion (i.e., ω and ω̇ are both zero). Thus, an analysis
of accelerometer positioning is performed in this section.
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The general percentage error equation utilized in this and the
following sections is

E(X,Δ) =
|X − X∗|

|X∗| (18)

where Δ denotes the error of a specific parameter and X and X∗

denote the state of interest and its nominal value, respectively.
The analysis of the traditional IMU as the basis for compari-

son is detailed as follows. The position vector from the COM to
the traditional IMU is denoted as r0 , and its reading is denoted
as a0 . If the sensor is installed precisely at the COM as planned,
r0 is a zero vector and a0 is equal to aCOM , as shown in (1)
and (2a). If the sensor is installed with Δr0x error, the angular
acceleration and velocity of the body also affect the readings of
a0 due to the Newton dynamics shown in (1). In this case, the
percentage errors are

E(ax,Δr0x) =

∣
∣−(ω2

y + ω2
z )Δr0x

∣
∣

|ax |

E(ay ,Δr0x) =
|(ω̇z + ωxωy )Δr0x |

|ay |

E(az ,Δr0x) =
|(−ω̇y + ωxωz )Δr0x |

|az |
(19)

which suggests that the percentage error is strongly determined
by the relative magnitudes among the states in (1). Because
of geometrical symmetry among the three principal axes, the
analysis of Δr0y and Δr0z is neglected due to the similarity in
their structures as that of Δr0x shown in (19). For example, the
structure of E(ay ,Δr0y ) is similar to that of E(ax,Δr0x).

The positioning error analysis of the nine-
axis system is detailed as follows. Assuming that
S3×2(rbest ,Δrjk )j=1,3,5; k=x,y ,z and W(rbest ,Δrjk )denote
the existence of one position error Δrjk in S3×2(rbest)and
W(rbest),respectively, and the sensors are correctly installed
without any orientation error, the corresponding accelerometer
readings according to (17) become

am (Δrjk ) = S3×2(rbest ,Δrjk )[aT
COM ω̇ T ]T

+ W(rbest ,Δrjk )ω6(ω). (20)

Thus, by importing (20) into (13), the acceleration states are

xvar(Δrjk )=S3×2(rbest)−1(am (Δrjk ) − W(rbest)ω6(ωm ))

= S3×2(rbest)−1S3×2(rbest ,Δrjk )[aT
COM ω̇ T ]T

+ S3×2(rbest)−1(W(rbest ,Δrjk )

− W(rbest))ω6(ω) (21)

where ωm is replaced by ω based on (8). If the sensor is installed
with position error Δr1x , the corresponding error equations are

E(ax,Δr1x) =

∣
∣−(ω2

y + ω2
z )Δr0x

∣
∣

2 |ax |

E(ay ,Δr1x) =
|(ω̇z + ωxωy )Δr0x |

2 |ay |
E(az ,Δr1x) = 0

E(ω̇x ,Δr1x) =

∣
∣(ω̇z + ωxωy − ω2

y − ω2
z )Δr1x

∣
∣

4 |ω̇x |

E(ω̇y ,Δr1x) =

∣
∣(−ω̇z − ωxωy + ω2

y + ω2
z )Δr1x

∣
∣

4 |ω̇y |

E(ω̇z ,Δr1x) =

∣
∣(−ω̇z − ωxωy − ω2

y − ω2
z )Δr1x

∣
∣

4 |ω̇z |
. (22)

It is obvious that the percentage errors of ax and ay states
of the nine-axis system shown in (22) are half that of the tradi-
tional IMU shown in (19), which matches the intuition that two
acceleration measurements are taken in the nine-axis system,
so the effect of the positioning error of the individual sensor is
reduced by half. Unlike the error Δr0x in the traditional IMU
affecting all three states shown in (19), the performance of the
third linear acceleration state az is not affected by the variation
Δr1x because the accelerometer readings affected by Δr1x are
{ a1 a2 }, and these two readings do not contribute to the state
az shown in (16). On the other hand, { a1 a2 } affects all three
components of angular acceleration shown in (16); thus, the
position error Δr1x appears in all three components.As shown
in Fig. 4(a), the components of the nominal value of position
vectors are “normalized” to 1 in the optimal configuration; thus,
the magnitude of Δr1x directly represents the amount of error.
For example, Δr1x = 0.1 equals a 10% error in r1x component.
Thus, the quantitative analysis can be derived if the motion states
are known.

C. Sensor With Orientation Error

In practical implementation, both the accelerometers and the
gyros might have orientational installation errors. As mentioned
in Section II, the directions of the sensors are generally set to
align with the principal axes since the body motion is repre-
sented in this coordinate. If orientations of the three one-axis
sensors do not align with the principal axes, but are linearly in-
dependent, a linear relation exists between the raw sensor data
and the desired sensory information in the body coordinate

sm = Rs =

[
R11 r12 r13
r21 R22 r23
r31 r32 R33

]

s (23)

where sm is the measurement vector with three linear-
independent components, s is the state vector along with three
principal axes, and R is a 3× 3 matrix. If the sensors are oriented
precisely to the principal axes, the operator R is merely an iden-
tity matrix (i.e., the ideal case Ri i = 1, ri j = 0, i, j=1,2,3,i �=j ).
The linear operator R is a rotation matrix if three sensing
directions are mutually orthogonal, which is reasonably held
for commercial multiaxis inertial sensors. The numerical
analysis shows that if the orientation error is 2◦ with respect to
the [ 1 1 1 ] rotating axis and assuming the same amount of
errors in all three axes represented as ER ([ 1 1 1 ], 2◦), the
diagonal terms of the R, Ri i , i = 1, 2, 3, are ∼0.9996 and the
off-diagonal terms of the R, ri j,i �=j , are ∼0.02. This reveals
that the motion supposedly to be measured by a certain sensor
has 0.04% measurement error, and it indicates a 2% crosstalk
error. For the 5◦ case, the former is 0.25% and the latter is 5%.
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According to (23), if the gyro has an orientational error, the
relation between the three-axis measurement data and the angu-
lar velocity state represented in the body coordinate is no longer
equal to (8), but in the form

ωm = Rωω. (24)

For both the traditional and the proposed IMUs, since the
angular velocity state measured by the gyros is already the de-
sired state, the state measurement error caused by orientational
installation error is determined by Rω only. The accelerometers
have no effect on this state.

Likewise, if the accelerometers of the traditional IMU have
an orientational error, a relation similar to (23) exists

am = RTaCOM . (25)

The associated error equation can then be derived as follows:

E(ax,RT ) =
|(R11 − 1)ax + r21ay + r31az |

|ax |
(26)

where R11 and ri1,i=1,2,3 , are diagonal and off-diagonal terms
of the operator RT .

The linear and angular acceleration states of the proposed
nine-axis system are derived according to the linear operation
shown in (16). How the orientation error affects the acceleration
measurement xvar requires further analysis. In the first scenario,
assuming that the accelerometers are oriented correctly, but the
gyros are not, the desired acceleration state xvar can be obtained
by importing (24) and (17) into (16)

xvar(Rω) = [aT
COM ω̇ T ]T

+ S3×2(rbest)−1W(rbest)(ω6(ω) − ω6(Rωω)).

(27)

Each state in the expanded form of (25) has several terms due
to the coupling effect of the sensor readings among all three
spatial principal axes. The corresponding error equations are

E(ax,Rω) =
∣
∣
∣
∣
∣
∣

−(r2
21 + r2

31)ω
2
x + (1 − R2

22 − r2
32)ω

2
y

+(1 − R2
33 − r2

23)ω
2
z − 2(R22r21 + r31r32)ωxωy

−2(R33r31 + r21r23)ωxωz − 2(R22r23 + R33r32)ωyωz

∣
∣
∣
∣
∣
∣

|ax |
E(ω̇z ,Rω) =
∣
∣
∣
∣
∣
∣
∣
∣
∣

R11(r21 + r31)ω2
x + r12(R22 + r32)ω2

y

+r13(R33 + r23)ω2
z

+(R11R22 − 1 + R11r32 + r12r21 + r12r31)ωxωy

+(R11R33 − 1 + R11r23 + r13r21 + r13r31)ωxωz

+(R22r13 + R33r12 − r12r23 − r13r32)ωyωz

∣
∣
∣
∣
∣
∣
∣
∣
∣

|ω̇z |
(28)

where Ri i,i=1,2,3 , and ri j,i �=j , are diagonal and off-diagonal
terms of the operator Rω . The error equations of the other four
states are skipped due to the similarity in structure as the two
shown in (28). Since the angular velocity state affects the accel-
eration readings through the double cross-product term shown
in (4), its effect to (28) appeared in quadratic forms. The coeffi-
cients in (28) are composed by the summation of the multiplica-
tions of the differently selected two terms of Rω . Because of the

multiplications, the effect of each term is further reduced. For
example, the coefficients of the six-term quadratic representa-
tion of angular velocity in E(ax,Rω)with ER ([ 1 1 1 ], 2◦)
are −0.0008, 0.0004, 0.0004, −0.0400, 0.0406, and −0.0010,
respectively. These in E(ω̇x ,Rω) are 0.0005, −0.0203, 0.0200,
0.0196, −0.0207, and 0.0013, respectively. Therefore, in gen-
eral, the effects are small, and the quantitative error analysis can
be derived if the motion states are known.

In the second scenario, assume that the accelerometer at posi-
tion I has orientation error RI and the remaining accelerometers
and gyros are oriented correctly. By assigning the acceleration
along with the third measurement axis at position I as ã7 , the
measured acceleration can be derived by combining (1) and (23)

[ ã1 ã2 ã7 ]T = RI(aCOM + ω̇ × r1 + ω × (ω × r1))
(29)

where the first two components on the left side are new measure-
ments data affected by the orientational error. Instead of (5a),
the revised accelerometer measurement array is

am (RI) = [ ã1 ã2 a3 a4 a5 a6 ]T (30)

and the acceleration state can be obtained by

xvar(RI) = S3×2(rbest)−1(am (RI) − W(rbest)ω6(ωm )).
(31)

Similar to (27), each state in the expanded form of (31) has
several terms due to the coupling effect of the sensor readings
among all three spatial principal axes. The corresponding error
equations are

E(ax,RI)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

(R11 − 1)ax + r21ay + r31az + (r21 − r31)ω̇x

+(1 − R11 + r31)ω̇y + (R11 − 1 − r21)ω̇z

+r31ω
2
x + r21ω

2
y + (R11 − 1)ω2

z

+(1 − R11 − r21)ωxωy + (1 − R11 − r31)ωxωz

−(r21 + r31)ωyωz

∣
∣
∣
∣
∣
∣
∣
∣
∣

2 |ax |
E(ω̇z ,RI)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(R11 − 1 + r12)ax + (R22 − 1 + r21)ay

+(r31 + r32)az

+(R22 − 1 + r21 − r31 − r32)ω̇x

+(1 − R11 − r12 + r31 + r32)ω̇y

+(R11 − R22 + r12 − r21)ω̇z

+(r31 + r32)ω2
x

+(R22 − 1 + r21)ω2
y + (R11 − 1 + r12)ω2

z

+(2 − R11 − R22 − r12 − r21)ωxωy

+(1 − R11 − r12 − r31 − r32)ωxωz

+(1 − R22 − r21 − r31 − r32)ωyωz

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

4 |ω̇z |
(32)

where Ri i,i=1,2,3 , and ri j,i �=j , are diagonal and off-diagonal
terms of the operator RI . As in the case with a gyro orientation
error, the error equations of the other four states are skipped due
to the similarity in structure as the two shown in (32). Unlike the
case in which the gyros have orientation errors, the orientation
errors of the accelerometers have a more complicate effect on
the acceleration measurement. According to (1), the acceleration
readings at any point except the origin are determined by the
linear and angular acceleration as well as the angular velocity.
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Thus, once the orientational error of the accelerometer exists,
all states appear in the error equation, as shown in (32). In
the case of orientational error RI equal to ER ([ 1 1 1 ], 2◦),
the coefficients of the 12-term state in E(ax,RI) are −0.0002,
0.0102,−0.0100, 0.0202,−0.0098,−0.0104,−0.0100, 0.0102,
−0.0002, −0.0100, 0.0102, and −0.0003. Those in E(ω̇z ,RI)
are −0.0051, 0.005, 0.0001, 0.0049, 0.0052, −0.0101, 0.0001,
0.0050, −0.0051, 0.0001, 0.0050, and −0.0051. Therefore, in
general, the effects are small, and the quantitative error analysis
can be derived if the motion states are known.

D. Short Discussion

The body states of a rigid body during spatial motion always
follow certain rules based on the Newton mechanics, as shown
in (1), which basically defines the relations among the linear
accelerations of arbitrary points on the body, angular accelera-
tion, and angular velocity of the body. Therefore, these states
appear in the error equations, while certain installation errors
exist. Though the position error of the accelerometer “shifts” the
acceleration measurement to another point, fewer terms of the
angular acceleration and velocity appear in the error equations
shown in (22) than in the case of orientation errors shown in
(28) and (32) because the latter case induces the coupling ef-
fects among all three axes. No matter in the traditional IMU or
in the nine-axis system, the quantitative measures of the errors
require the information of the actual body states.

For traditional and nine-axis IMUs, the angular velocity state
is directly measured by the gyros; thus, this measurement is
affected only by the orientation of the gyros and not by their
positions or the status of the accelerometers. As for the linear
acceleration state, the traditional IMU measures this state by
accelerometers only. Consequently, fewer states appear in the
error equations shown in (19) and (26). The nine-axis system
requires data from the accelerometers and the gyros to compute
this state, so more terms are involved in the error equations
shown in (22), (28), and (32). This is the tradeoff of not having
measurements directly at the desired location (i.e., at COM).
However, because of this arrangement, the allocations of the
sensors have more flexibility, and the effects of errors in the
individual sensors are reduced. More specifically, by compar-
ing (19) and (22) as well as (26) and (32), the numbers 2 and
4 are at the denominators in (22) and (32). In addition, the
angular acceleration state can be derived from instant data—a
memoryless process, and its measurement error due to instal-
lation errors can be quantified as the linear combinations of
the body states. In the traditional IMU, the angular acceleration
state is derived by the differentiation of the angular velocity
state. Thus, a sequence of data with a high sampling rate is re-
quired, and the quantitative error amount is determined not only
by Rω , but also by the subsequently differentiation and filter-
ing processes that may vary significantly among the techniques
adopted.

If the traditional IMU is not installed at COM [assuming at ap

shown in (1)], the derivation of the angular velocity measured by
the gyros remains intact. However, the recovery of COM linear
acceleration ao now depends on not only the values associated
with the accelerometer ap and rp , but also the readings of angular
acceleration and velocity based on the Newton mechanics shown

Fig. 5. Experimental apparatus. (a) Sketch of the nine-axis IMU. (b) Im-
age of the apparatus. (c)–(e) Images of the three-axis accelerometer module,
six-axis IMU module, and two-axis inclinometer module, respectively. The
apparatus is tilted during experiments, so the accelerometer measurements
are affected by both apparatus motion and gravity effect in a time-variant
manner.

in (1). This implies that the signal quality of the COM linear
acceleration now hinges on that of the differentiated angular
acceleration.

V. EXPERIMENTAL EVALUATION

The benchtop apparatus with one controllable rotational DOF,
as shown in Fig. 5(a)–(b), was utilized for experimental eval-
uation of the proposed nine-axis system. The required sensory
measurements were obtained from three three-axis accelerom-
eters (ADXL330, ±3 g, Analog Device, using two-axis only),
three one-axis gyros (ADXRS610, ±3000 per second, Analog
Device), and one two-axis inclinometer (SCA100 T, ±900 , VTI
Technologies). The photographs of these custom-made modules
are shown in Fig. 5(c)–(e). In addition, a three-axis accelerom-
eter (ADXL330) was also mounted at the “virtual” COM for
performance comparison (as the “traditional IMU”). The ac-
celerometers of the nine-axis system are mounted according to
the best configuration, as shown in Fig. 4(a), with l = 100 mm.
In the numerical computations, the length unit was changed to
decimeter (l = 1), as suggested in Section III.B, and the final
results were presented in standard SI MKS units. A real-time
embedded control system (sbRIO-9632, National Instruments)
running at 500 Hz was in charge of sensor signal collection
and position-controlled rotating motion generation. All of the
32 analog input channels of the sbRIO have ±10 V range and
16-bit A–D resolutions. By considering mechanical structure
manufacturing and printed circuit board (PCB) positioning, the
sensor positioning accuracy can be controlled within 1 mm.
Thus, for the apparatus with l = 100 mm utilized in this paper,
Δr = 0.01 equals to 1%. Together with the projected range of
the states, the effect of the error to the state derivation can be
roughly estimated by (19) and (22).
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TABLE I
RMS NOISE OF THE SENSORS AND THE MECHATRONIC SYSTEM

TABLE II
COMPARISON OF THE RMS NOISES OF THE TRADITIONAL IMU

AND NINE-AXIS SYSTEMS

Table I lists the rms noises of the sensors themselves and of
the mechatronic systems. They are the means of several datasets.
The sensor noises are derived from the noise density provided in
the datasheet [30], [31], with the integration of the spectrum with
the approximated one-pole system model. The system noises are
empirically measured, while the apparatus is stationary. This
data represent the signal quality of the whole mechatronic sys-
tem. For both sensors, Table I shows that the rms noise of the
overall system is similar to that of the sensors themselves, which
confirms that the acquisition setup is functional.

Table II compares the rms noises of the traditional IMU to
the proposed nine-axis system. They are the means of several
datasets as well. The left three columns list the COM linear
acceleration; the noise data of traditional IMU are acquired
directly from the three-axis module mounted at the COM; thus,
they are identical to the data, as shown in Table I. The noise data
of the nine-axis system are derived from (16) with accelerometer
and gyro measurements, and they show that redundancy of the
sensors improves the signal quality. The right three columns in
Table II reveal that the noise of angular acceleration derived
by (13) in the nine-axis system is much better than that from
traditional IMU, which, in general, uses differentiation of gyro
signals.

The proposed nine-axis system was evaluated by two differ-
ent testing setups: the swing test on a benchtop apparatus with
its frame fixed to the world frame and the other is a free arbi-
trary motion test. The details are described in the following two
sections.

A. Swing Test

In this setup, the benchtop apparatus was rigidly fixed to the
world frame, and the “virtual” COM of the proposed nine-axis
system was positioned on the rotating apparatus at a designated
distance 30 mm to the rotational axis along the minus y-axis of
the body frame B, not at the axis [see Fig. 5(a)]. Thus, the COM
could be subjected to linear and angular accelerations while the
apparatus rotated. Empirically, it rotated in a sinusoidal motion

Fig. 6. Ideal (gray dashed line) and measured (red solid line) accelerations of
a1 –a6 at three sensor positions while the apparatus is subjected to sinusoidal
swing motion.

with amplitude of 23.5◦ and frequency of 1 Hz, so theoreti-
cally, the COM was subjected to sinusoidal tangent, normal,
and angular accelerations. In addition, the ideal accelerations
at all sensor positions, a1 to a6 , can be calculated according to
(1), as shown in the gray dashed lines in Fig. 6. Because of the
offset and the double cross-product term, the ideal accelerations
at these locations were the compositions of several sinusoidal
functions, unlike the simple single sinusoidal motion shown at
the COM. Since a3 and a6 measure the accelerations parallel to
the rotation axis, the readings induced by motion are supposed
to be zeros.

To make the testing scenario more realistic to practical ap-
plications, the rotating axis of the turntable was tilted 12◦ from
the vertical axis, so the gravity-induced acceleration affected all
accelerometer readings in a time-variant manner while the table
rotated. The gravity compensation was in accordance with the
known orientation provided by the encoder on the apparatus.
That procedure was executed before the sensor readings were
imported into (16). The measured accelerations, as shown in
Fig. 6 (red solid lines), are after gravity compensation.

Fig. 7(a) plots the theoretical estimated and experimental
measured body states while the apparatus was operated in the
sinusoidal motion. To make the plots presentable, states are pro-
cessed with a Chebyshev filter. The associated statistical data
are listed in Table III, where the rms errors data are compared
with theoretical estimated states. Due to 1 DOF rotation of the
benchtop apparatus, the effective linear accelerations are 2-D,
spanned in the plane perpendicular to the rotational axis, as
shown in Fig. 5(a) (i.e., the xy plane in the body frame). The
effective angular acceleration and velocity are both 1-D along
with the rotation axis (i.e., ω̇z and ωz ). Thus, other states, as
shown in Table III, can be treated as operation noises, includ-
ing az , ωx , ωy , ω̇x , and ω̇y . In addition, the linear acceleration



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 7. (a) Comparison of states obtained from different methods after filtering.
Subplots from top to bottom are tangential acceleration at , normal acceleration
an , angular acceleration ω̇z , and angular velocity ωz , respectively. Notations:
gray dashed line: ideal curve derived from desired position control trajectories;
green dotted line: state derived from traditional IMU; red solid line: state derived
from nine-axis system. Experimental data are processed with gravity compensa-
tion. (b) Comparison of raw angular acceleration data from the traditional IMU
(green dotted line) and the nine-axis system (red solid line).

TABLE III
COMPARISON OF THE RMS ERROR OF THE TRADITIONAL IMU AND THE

NINE-AXIS SYSTEM TO THE THEORETICAL ESTIMATED STATES WHILE THE

APPARATUS ROTATED IN THE SINUSOIDAL MOTION

states are represented in tangential and normal accelerations at

and an because of their better physical implications than those
represented in the Cartesian body coordinates. The first and sec-
ond subplots of Fig. 7(a) show that even though the sensors of
the proposed nine-axis system (red solid lines) are not located
at the COM, they can be utilized to recover the COM linear
acceleration by comparing the curves to the theoretical ones
(gray dashed lines) and those measured by the traditional IMU
located at the COM (green dotted lines). Though the experi-
mental curves show vibrating behavior because of the imperfect
position-based motion control and empirically unrigid apparatus
structure, the trends of the curves, in general, match each other.
The third subplot shows that the angular acceleration state can
also be correctly derived by the nine-axis system that closely

Fig. 8. Comparison of the states obtained from theoretically estimated (gray
dashed line) and empirically measured by the nine-axis system with (red solid
line) and without (blue thick-dash dotted line) gravity compensation.

TABLE IV
RMS ERROR BETWEEN THE TRADITIONAL IMU AND THE NINE-AXIS SYSTEM

WHILE THE APPARATUS MOVED ARBITRARILY IN THE SPATIAL SPACE

matches the curve of the traditional IMU. Since traditional and
proposed nine-axis systems used the same gyro to measure the
angular velocity, the fourth subplot of Fig. 7(a) only contains one
experimental curve and the bottom row of Table III represents
the experimental data shared by both systems. The raw angular
acceleration measurements without any filtering [see Fig. 7(b)]
indicate that the data from the nine-axis system are much cleaner
than that from the traditional IMU, and the implementation of
Chebyshev filter may be skipped.

Fig. 8 compares the acceleration states derived by the nine-
axis system with (red solid line) and without (blue thick dash
dotted line) gravity compensation. As expected, the first two
subplots show that the derivation of linear accelerations does
require gravity compensation as that from the traditional IMU.
On the contrary, the compensated and uncompensated angular
accelerations shown in the third subplot are identical, confirming
that the angular acceleration is free of a gravity effect in the
nine-axis system, as described in Section IV-A.

B. Arbitrary Motion Test

In this setup, the benchtop apparatus was moved arbitrarily
in the 3-D spatial space; thus, the linear and angular acceler-
ations along all three principal axes could be induced in the
test. The gravity effect was compensated by the readings of the
two-axis inclinometer, and the details are briefly described in
Appendix I. Table IV lists the statistical data of this experiment,
where the rms errors of accelerations between measurements
from the nine-axis system and the traditional IMU located at
the COM are presented. Fig. 9(a) plots one typical result of the
experiment. To make the plots presentable, states are processed
with a Chebyshev filter as well. The top three subplots confirm
that though the sensors of the proposed nine-axis system (red
solid lines) are not located at the COM, they can indeed re-
cover the COM linear acceleration. The bottom three subplots
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Fig. 9. (a) Comparison of the states obtained from the traditional IMU (green
dotted line) and the nine-axis system (red solid line). The upper three subplots
are spatial linear accelerations, and the bottom three ones are the spatial angular
accelerations. Experimental data are processed with gravity compensation. (b)
Comparison of raw angular acceleration data from the traditional IMU (green
dotted line) and the nine-axis system (red solid line).

of Fig. 9(a) show that the angular acceleration states can be
correctly derived by the nine-axis system.

The angular acceleration measurements without any filtering,
as shown in Fig. 9(b), again indicate that the quality of the raw
data from the nine-axis system is much better than that from
the traditional IMU. Although the filtered signals in the latter
case can recover the original motion states, in general, the esti-
mated states introduce certain delay, and the system with a high
sampling rate and sufficient computation power is required for
filter implementation. On the contrary, the angular acceleration
of the nine-axis system can be derived adequately via simple
memoryless matrix computation.

VI. CONCLUSION

We have investigated the nine-axis IMU that utilizes a three-
axis angular velocity measurement from gyros and a six-axis

linear acceleration measurement from three two-axis accelerom-
eters. The design of this sensory system was based on an analysis
of rigid body dynamics and matrix theory, and an optimal con-
figuration of the system with three two-axis accelerometers was
proposed. The error analysis shows the merit of the redundancy
of the sensors. The experimental results confirmed that even
though the sensors of the nine-axis system are not located at
the COM, the system is capable of delivering linear accelera-
tion measurements comparable with the traditional IMU. The
system also yields correct angular acceleration, and the measure-
ment of this state is free of gravity effect as well. In addition, the
computation only requires instant data, a memoryless process.

We are in the process of investigating a sensor fusion scheme
of this system with other position and orientation sensors, with
the intention of constructing an observable system capable of
accurate full body state estimation for analysis of dynamic lo-
comotion in legged robots.

APPENDIX

GRAVITY COMPENSATION OF ACCELEROMETER READINGS

FROM THE MEASUREMENTS OF A TWO-AXIS INCLINOMETER

In the empirical evaluation, a two-axis inclinometer is utilized
in the arbitrary motion test, as described in Section V-B. Thus,
its compensation method is briefly introduced in this section.
The two-axis inclinometer mounted rigidly on the body frame
measures the angles θx and θy between the gravity vector g
and two principal axes x and y of B. The third angle θz can
be derived based on the property of the direction cosines as
follows:

cos θ2
x + cos θ2

y + cos θ2
z = 1. (33)

Based on this relationship, the gravity vector g can be repre-
sented in the body frame

bg = g[ cos θx cos θy cos θz ]T (34)

where g = 9.81 m/s2 , and three components of (34) indicate the
amount of gravity-induced acceleration along the three principal
axes of B. Since the sensing directions of the accelerometers
are aligned with the principal axes of B as well, the gravity-
compensated acceleration measurement aj ,j = 1−6 can be de-
rived by subtracting (34) from the raw measurement of the
accelerometers.
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