

機電系統原理與實驗一(ME5126)

Kalman Filter

R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems", Transaction of the ASME--Journal of Basic Engineering, Mar. 1960, pp. 35-45

P. S. Maybeck, "Stochastic Models, Estimation, and Control, Volume 1", Academic Press, Inc., 1979

G. Welch and G. Bishop, "An introduction to the Kalman Filter", 2001 http://www.cs.unc.edu/~welch/kalman/

M. S. Grewal, L. R. Weill, A. R. Andrews, "Global Positioning Systems, Inertial Navigation, and Integration," The MIT Press, 2004

PowerPoint 中部分圖片擷取和修改自教科書和網路圖片

機電系統原理與實驗 - ME5126 林沛群

林沛群 國立台灣大學 機械工程學系

1

Probability

- The probability

 $p(A) = \frac{possible\ outcome\ favoring\ event\ A}{Total\ number\ of\ possible\ outcomes}$

Of an outcome favoring either A or B

$$p(A \cup B) = p(A) + p(B)$$

If the probability of two outcomes is independent

$$p(A \cap B) = p(A)p(B)$$

Of outcome A given an occurrence of outcome B

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$
, conditionally probability

Random Variables -1

A random variable

- Usually written X, is a variable whose possible values are numerical outcomes of a random phenomenon
- Two types: Discrete and continuous

Discrete random variables

- One which may take on either a finite or at most a countably infinite set of discrete values
- Ex: The number of children in a family, the attendance at a cinema

機電系統原理與實驗一 ME5126 林沛群

3

Random Variables -2

Continuous random variables

- One which takes on values that vary continuously within one or more real intervals, and have a cumulative distribution function (CDF) that is absolutely continuous
- Having an uncountable infinite number of possible values, all of which have probability 0, though ranges of such values can have nonzero probability
- Are usually measurements
- Ex: Height, weight, etc

Random Variables -3

- The probability distribution
 - Or probability function, or probability mass function
- The probability distribution of a discrete random variable
 - · A list of probabilities associated with each of its possible values
 - Ex: A random variable X may take k values, with the probability that $X = X_i$ defined to be $P(X = X_i) = p_i$, the probabilities p_i must satisfy the following

$$0 \le p_i \le 1$$
 for each i
 $p_1 + p_2 + \dots + p_k = 1$

機電系統原理與實驗一 ME5126 林沛群

Random Variables -4

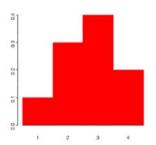
- A cumulative distribution function
 - Giving the probability that the random variable X is less than or equal to x, for every value x
 - Found by summing up the probabilities (for a discrete random variable)

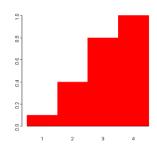
1

Random Variables -5

◆ Ex: X

Outcome	1	2	3	4
Probability	0.1	0.3	0.4	0.2





Probability distribution

Cumulative distribution

The probability of X equal to 2 or 3

$$p(X = 2 \cup X = 3) = p(X = 2) + p(X = 3) = 0.3 + 0.4 = 0.7$$

The probability that X is greater than 1

$$p(X > 1) = 1 - p(X = 1) = 1 - 0.1 = 0.9$$

機電系統原理與實驗一 ME5126 林沛群

7

Random Variables -6

The probability distribution of a continuous

random variable

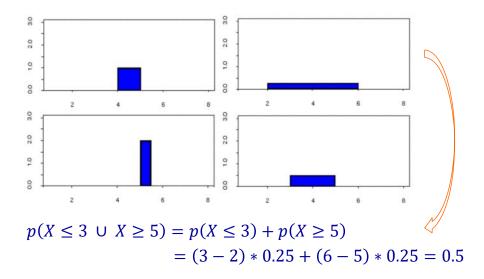
- Not defined at specific values; defined over an interval of values, and is represented by an integral
- Ex: A random variable X may take all values over an interval of real numbers
 - The probability that X is in the set of outcomes A, p(A), is defined to be the area above A and under a curve (i.e., known as a density curve), which must satisfy the following

$$\forall x, p(x) \ge 0$$
$$\int p(x)dx = 1$$

1

Random Variables -7

- Ex: Uniform distribution
 - An interval of numbers (a,b) has a continuous distribution
 - Having an equal probability of being observed
 - Ex: intervals, (4,5), (2,6), (5,5.5), (3,5)

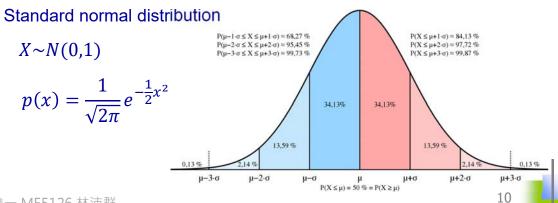


機電系統原理與實驗一 ME5126 林沛群

Random Variables -8

- Ex: Normal (or Gaussian or Gauss or Laplace-Gauss) distribution
 - $_{\circ}$ Having a bell-shaped density curve described by its mean μ and standard deviation σ
 - Density curve: Symmetrical, centered about its mean, with its spread determined by its standard deviation

$$X \sim N(\mu, \sigma^2) \qquad p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$



機電系統原理與實驗一 ME5126 林沛群

Random Variables -8

Formulation

mean
$$X = \mu = E[X]$$

variance $X = \sigma^2 = Var(X) = E[(X - \mu)^2]$
 $= E[(X - E[X])^2] = E[X^2 - 2XE[X] + E[X]^2]$
 $= E[X^2] - 2E[X]E[X] + E[X]^2$
 $= E[X^2] - E[X]^2$

11

機電系統原理與實驗一 ME5126 林沛群

Random Walk -1

- Description
 - A path that consists of a succession of random steps on some mathematical space such as the integers
 - Most often referred to a special category of Markov chains or Markov processes
 - A process for which predictions can be made regarding future outcomes based solely on its present state and--most importantly-such predictions are just as good as the ones that could be made knowing the process's full history
 - It is common to model the dynamics of the state as a Markov random walk in the highest estimated time derivatives, with zeromean normally-distributed increments

Random Walk -2

Formulation

$$\begin{split} X[k] &= X[k-1] + e[k] & e[k] \sim N(0,\sigma^2) \\ &\text{Previous state} \\ X[k] &= (X[k-2] + e[k]) + e[k] = \dots = X[0] + \sum_{j=1}^k e[k] \\ mean &= E[X[k]] = E[X[0] + \sum_{j=1}^k e[k]] \\ &= E[X[0]] + E[\sum_{j=1}^k e[k]] \\ &= X[0] + \sum_{j=1}^k E[e[k]] \\ &= X[0] + 0 = X[0] \\ variance &= Var(X) = E\left[\left(X[k] - E[X[k]]\right)^2\right] = E[X[k]^2] - E[X[k]]^2 \\ &= E[X[0] + \sum_{j=1}^k e[k]\right) (X[0] + \sum_{j=1}^k e[k]) - E[X[0]]^2 \\ &= E[X[0]^2 + 2X[0] \sum_{j=1}^k e[k] + \sum_{j=1}^k e[k] - E[X[0]]^2 \\ &= E[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k \sum_{j=1}^k E[e[k]] - E[X[0]]^2 \\ &= E[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k \sum_{j=1}^k e[k] - E[X[0]]^2 \\ &= E[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k \sum_{j=1}^k e[k] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k \sum_{j=1}^k e[k] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k \sum_{j=1}^k e[k] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k \sum_{j=1}^k e[k] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k E[e[k]] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k E[e[k]] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k E[e[k]] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k E[e[k]] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k E[e[k]] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k E[e[k]] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k E[e[k]] - E[X[0]]^2 \\ &= e[X[0]^2] + 2X[0] \sum_{j=1}^k E[e[k]] + \sum_{j=1}^k E[e[k]] + E[X[0]^2] +$$

機電系統原理與實驗一 ME5126 林沛群

Discrete Constant Velocity Process -1

Formulation

$$x(t+\Delta t)=x(t)+\Delta t \ v(t)$$

$$v(t+\Delta t)=v(t)+\eta \qquad \qquad \eta{\sim}N(0,\Delta t\sigma_v^2), \, {\rm scalar \, representation}$$

The velocity v(t) wanders away from v(0) with variance proportional to $t\sigma_v^2$

$$X = \begin{bmatrix} x \\ v \end{bmatrix} \sim N(\mu, \Sigma) = N(\begin{bmatrix} \mu_x \\ \mu_v \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xv} \\ \Sigma_{xx} & \Sigma_{xy} \end{bmatrix})$$

$$\mu \to E[A(\Delta t)X + \eta] = A(\Delta t)E[X] + E[\eta] = A(\Delta t)\mu = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_x \\ \mu_v \end{bmatrix}$$
Propagating through one step
$$= \begin{bmatrix} \mu_x \\ \mu \end{bmatrix} + \Delta t \begin{bmatrix} \mu_v \\ 0 \end{bmatrix} = \mu + \Delta t \begin{bmatrix} \mu_v \\ 0 \end{bmatrix}$$

Discrete Constant Velocity Process -2

$$\begin{split} \Sigma &\to E[(AX + \eta)(AX + \eta)^T] - E[AX + \eta]E[AX + \eta]^T \\ &= E[(AX + \eta)(X^TA^T + \eta^T)] - (AE[X] + E[\eta])(E[X]^TA^T + E[\eta]^T) \\ &= AE[XX^T]A^T + AE[X\eta^T] + E[\eta X^T]A^T + E[\eta\eta^T] \\ &- AE[X]E[X]^TA^T - AE[X]E[\eta]^T - E[\eta]E[X]^TA^T - E[\eta]E[\eta]^T \\ &= A(E[XX^T] - E[X]E[X]^T)A^T + E[\eta\eta^T] \\ &= A(\Delta t)\Sigma A(\Delta t)^T + Q(\Delta t) \\ &= \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \Sigma_{xx} & \Sigma_{xv} \\ \Sigma_{vx} & \Sigma_{vv} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \Delta t \sigma_v^2 \end{bmatrix} \\ &= \begin{bmatrix} \Sigma_{xx} & \Sigma_{xv} \\ \Sigma_{vx} & \Sigma_{vv} \end{bmatrix} + \Delta t \begin{bmatrix} 2\Sigma_{xv} + \Delta t \Sigma_{vv} & \Sigma_{vv} \\ \Sigma_{vv} & \sigma_v^2 \end{bmatrix} \\ &= \Sigma + \Delta t \begin{bmatrix} 2\Sigma_{xv} + \Delta t \Sigma_{vv} & \Sigma_{vv} \\ \Sigma_{vv} & \sigma_v^2 \end{bmatrix} \end{split}$$

Function of Δt ; one iteration of $\Delta t \neq$ two iterations of $\frac{\Delta t}{2}$

Reformulate the process in the continuous time domain

Discrete Constant Velocity Process -3

Continuous constant velocity process

Integration...

$$u(t) = \begin{bmatrix} \mu_{\chi} + t\mu_{v} \\ \mu_{v} \end{bmatrix}$$

$$\Sigma(t) = \begin{bmatrix} \Sigma_{xx} + 2t\Sigma_{xv} + t^2\Sigma_{vv} + \frac{t^3}{3}\sigma_v^2 & \Sigma_{xv} + t\Sigma_{vv} + \frac{t^2}{2}\sigma_v^2 \\ \Sigma_{xv} + t\Sigma_{vv} + \frac{t^2}{2}\sigma_v^2 & \Sigma_{vv} + t\sigma_v^2 \end{bmatrix}$$

$$\mu o A(t)\mu = \mu + {t\mu_v \brack 0}$$
 Mean update is identical in the discrete and continuous cases

$$\Sigma \to A(t)\Sigma A(t)^{T} + Q(t) = \Sigma + \begin{bmatrix} 2t\Sigma_{xv} + t^{2}\Sigma_{vv} & t\Sigma_{vv} \\ t\Sigma_{vv} & 0 \end{bmatrix} + \sigma_{v}^{2} \begin{bmatrix} \frac{t^{3}}{3} & \frac{t^{2}}{2} \\ \frac{t^{2}}{2} & t \end{bmatrix}$$

Discrete Constant Acceleration Process -1

Formulation

$$\begin{pmatrix} x \\ v \\ a \end{pmatrix} \sim N(\mu, \Sigma) = N(\begin{bmatrix} \mu_x \\ \mu_v \\ \mu_a \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xv} & \Sigma_{xa} \\ \Sigma_{vx} & \Sigma_{vv} & \Sigma_{va} \\ \Sigma_{ax} & \Sigma_{av} & \Sigma_{aa} \end{bmatrix})$$

$$A(\Delta t) = \begin{bmatrix} 1 & \Delta t & 0 \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix} + O(\Delta t^2)$$

$$Q(\Delta t) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & t\sigma_a^2 \end{bmatrix}$$

$$\mu \to A(\Delta t)\mu = \mu + \Delta t \begin{bmatrix} \mu_v \\ \mu_a \\ 0 \end{bmatrix} + O(\Delta t^2)$$

$$\Sigma \to A(\Delta t)\Sigma A(\Delta t)^T + Q(t) = \Sigma + \Delta t \begin{bmatrix} 2\Sigma_{xv} & \Sigma_{vv} + \Sigma_{xa} & \Sigma_{va} \\ \Sigma_{vv} + \Sigma_{xa} & 2\Sigma_{va} & \Sigma_{aa} \\ \Sigma_{va} & \Sigma_{aa} & \sigma_a^2 \end{bmatrix} + O(\Delta t^2)$$

機電系統原理與實驗- ME5126 林沛群

Discrete Constant Acceleration Process -2

Differentiation...

$$\dot{\mu} = \begin{bmatrix} \mu_v \\ \mu_a \\ 0 \end{bmatrix}$$

$$\dot{\Sigma} = \begin{bmatrix} 2\Sigma_{xv} & \Sigma_{vv} + \Sigma_{xa} & \Sigma_{va} \\ \Sigma_{vv} + \Sigma_{xa} & 2\Sigma_{va} & \Sigma_{aa} \\ \Sigma_{va} & \Sigma_{aa} & \sigma_a^2 \end{bmatrix} \quad \begin{array}{ll} \Sigma_{a,a}\left(t\right) & = & \Sigma_{a,a} + t \cdot \sigma_a^2 \\ \Sigma_{v,a}\left(t\right) & = & \Sigma_{v,a} + t \cdot \Sigma_{a,a} + \frac{t^2}{2} \cdot \sigma_a^2 \\ \Sigma_{v,v}\left(t\right) & = & \Sigma_{v,v} + 2t \cdot \Sigma_{v,a} + t^2 \cdot \Sigma_{a,a} + \frac{t^3}{3} \cdot \sigma_a^2 \\ \Sigma_{x,a}\left(t\right) & = & \Sigma_{x,a} + t \cdot \Sigma_{v,a} + \frac{t^2}{2} \cdot \Sigma_{a,a} + \frac{t^3}{6} \cdot \sigma_a^2 \end{array}$$

Integration...

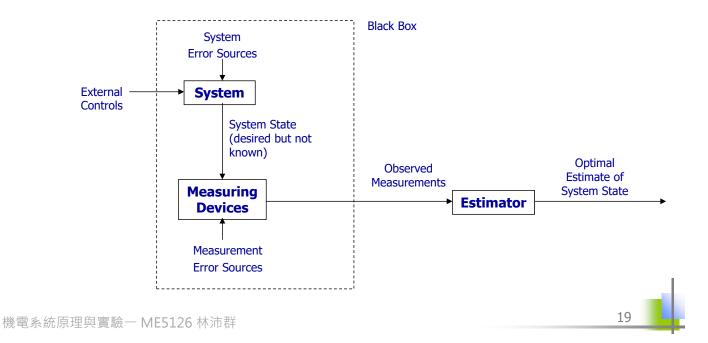
$$u(t) = \begin{bmatrix} \mu_{x} + t\mu_{v} + \frac{t^{2}}{2}\mu_{a} \\ t\mu_{a} \\ 0 \end{bmatrix}$$
$$\Sigma(t) = \cdots$$

$$\begin{split} & \Sigma_{v,a}\left(t\right) &=& \Sigma_{v,a} + t \cdot \Sigma_{a,a} + \frac{t^2}{2} \cdot \sigma_a^2 \\ & \Sigma_{v,v}\left(t\right) &=& \Sigma_{v,v} + 2t \cdot \Sigma_{v,a} + t^2 \cdot \Sigma_{a,a} + \frac{t^3}{3} \cdot \sigma_a^2 \\ & \Sigma_{x,a}\left(t\right) &=& \Sigma_{x,a} + t \cdot \Sigma_{v,a} + \frac{t^2}{2} \cdot \Sigma_{a,a} + \frac{t^3}{6} \cdot \sigma_a^2 \\ & \Sigma_{x,v}\left(t\right) &=& \Sigma_{x,v} + t \cdot (\Sigma_{v,v} + \Sigma_{x,a}) + \frac{3t^2}{2} \cdot \Sigma_{v,a} + \frac{t^3}{2} \cdot \Sigma_{a,a} + \frac{t^4}{8} \cdot \sigma_a^2 \\ & \Sigma_{x,x}\left(t\right) &=& \Sigma_{x,x} + 2t \cdot \Sigma_{x,v} + t^2 \cdot (\Sigma_{v,v} + \Sigma_{x,a}) + t^3 \cdot \Sigma_{v,a} + \frac{t^4}{4} \cdot \Sigma_{a,a} + \frac{t^5}{20} \cdot \sigma_a^2 \end{split}$$

$$Q(t) = \sigma_a^2 \begin{bmatrix} \frac{t^5}{20} & \frac{t^4}{8} & \frac{t^3}{6} \\ \frac{t^4}{8} & \frac{t^3}{3} & \frac{t^2}{2} \\ \frac{t^3}{6} & \frac{t^2}{2} & t \end{bmatrix} \text{ Process noise}$$

The Problem

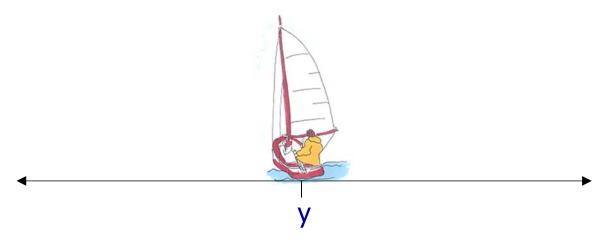
- Why do we need Kalman Filter?
 - "Usually" system states cannot be measured directly
 - Want to have "optimal" state estimation



Kalman Filter

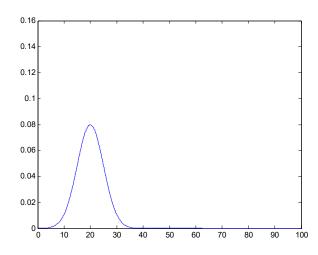
- Recursive data processing algorithm
 - Generates optimal estimate of desired quantities given the set of measurements
 - For linear system and white Gaussian errors, Kalman filter is "best" estimate based on all previous measurements
 - Recursive: Doesn't need to store all previous
 measurements and reprocess all data each time step

Example

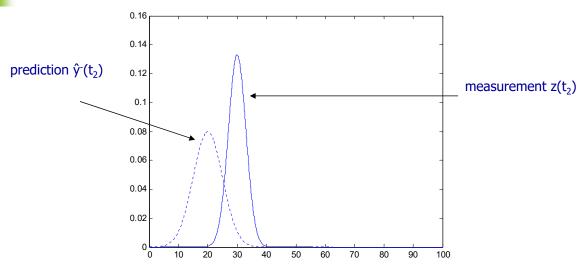


- Lost on the 1-dimensional line
- Position y(t)
- Assume Gaussian distributed measurements

機電系統原理與實驗一 ME5126 林沛群

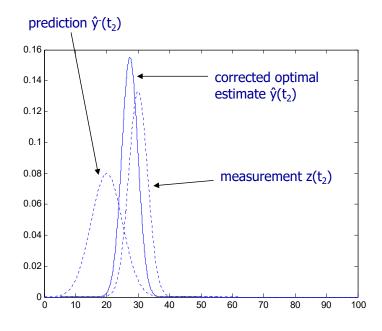


- Sextant Measurement at t_1 : Mean = z_1 and Variance = σ_{z_1}
- Optimal estimate of position is: $\hat{y}(t_1) = z_1$
- Variance of error in estimate: $\sigma_{x}^{2}(t_{1}) = \sigma_{z_{1}}^{2}$
- Boat in same position at time t₂ <u>Predicted</u> position is z₁



- So we have the prediction ŷ-(t₂)
- GPS Measurement at t₂: Mean = z₂ and Variance = σ_{z2}
- Need to <u>correct</u> the prediction due to measurement to get ŷ(t₂)
- Closer to more trusted measurement linear interpolation?

機電系統原理與實驗一 ME5126 林沛群



- Corrected mean is the new optimal estimate of position
- New variance is smaller than either of the previous two variances

1

Conceptual Overview -5

Lesson so far

Make prediction based on previous data - \hat{y} -, σ -

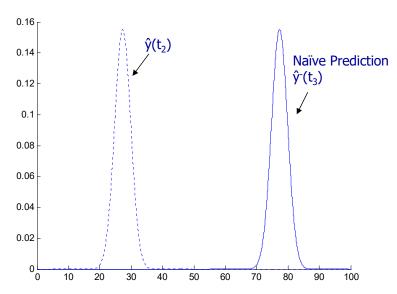
Take measurement – z_k , σ_z

Optimal estimate (ŷ) = Prediction + (Kalman Gain) * (Measurement - Prediction)

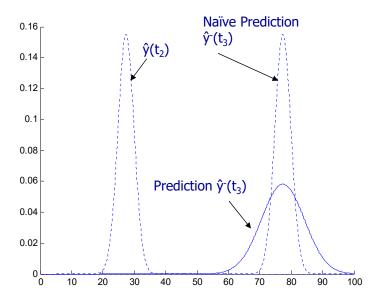
Variance of estimate = Variance of prediction * (1 - Kalman Gain)

5

機電系統原理與實驗一 ME5126 林沛群

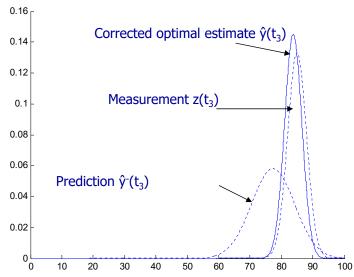


- At time t₃, boat moves with velocity dy/dt=u
- Naïve approach: Shift probability to the right to predict
- This would work if we knew the velocity exactly (perfect model)



- Better to assume imperfect model by adding Gaussian noise
- Distribution for prediction moves and spreads out

機電系統原理與實驗一 ME5126 林沛群



- Now we take a measurement at t₃
- Need to once again correct the prediction
- Same as before

- The procedure
 - Initial conditions (\hat{y}_{k-1} and σ_{k-1})
 - Prediction (ŷ-k, σ-k)
 - Use initial conditions and model (eg. constant velocity) to make prediction
 - Measurement (z_k)
 - Take measurement
 - Correction (\hat{y}_k, σ_k)
 - Use measurement to correct prediction by 'blending' prediction and residual – always a case of merging only two Gaussians
 - Optimal estimate with smaller variance

機電系統原理與實驗一 ME5126 林沛群

Theoretical Basis -1

Process to be estimated

$$y_k = Ay_{k-1} + Bu_k + w_{k-1}$$

Process Noise (w) with covariance Q

$$z_k = Hy_k + v_k$$

Measurement Noise (v) with covariance R

- Kalman Filter
 - Predicted: ŷ-k is estimate based on measurements at previous time-

$$\hat{y}_{k}^{-} = Ay_{k-1} + Bu_{k}$$

 $\hat{y}_{k} = Ay_{k-1} + Bu_{k}$ Predict (a priori) state estimation

$$P_{k}^{-} = AP_{k-1}A^{T} + C$$

 $P_k^- = AP_{k-1}A^T + Q$ Predict (a priori) covariance

Corrected: ŷ_k has additional information – the measurement at time k

$$\hat{y}_k = \hat{y}_k + K(z_k - H \hat{y}_k)$$

$$P_k = (I - KH)P_k^{-1}$$

$$K = P_k^{-}H^{T}(HP_k^{-}H^{T} + R)^{-1}$$

Kalman gain

Theoretical Basis -2

Whole procedure

Prediction (Time Update)

(1) Project the state ahead

$$\hat{y}_{k}^{-} = Ay_{k-1} + Bu_{k}$$

(2) Project the error covariance ahead

$$P_{k}^{-} = AP_{k-1}A^{T} + Q$$

Correction (Measurement Update)

(1) Compute the Kalman Gain

$$K = P_k^-H^T(HP_k^-H^T + R)^{-1}$$

(2) Update estimate with measurement $\boldsymbol{z}_{\boldsymbol{k}}$

$$\hat{y}_k = \hat{y}_k^- + K(z_k - H \hat{y}_k^-)$$

(3) Update Error Covariance

$$P_k = (I - KH)P_k^-$$

機電系統原理與實驗一 ME5126 林沛群

31

Blending Factor

- If we are sure about measurements
 - Measurement error covariance (R) decreases to zero
 - K increases and weights residual more heavily than prediction
- If we are sure about prediction
 - ◆ Prediction error covariance P-k decreases to zero
 - K decreases and weights prediction more heavily than residual

Kalman Filter in Our Experiments -1

System model

$$X_k = A_k X_{k-1} + B_k U_k + \omega_k \qquad \omega_k \sim N(0, Q_k)$$

$$Z_k = H_k X_k + v_k \qquad v_k \sim N(0, R_k)$$

Time Update

$$X_k^- = A_k X_{k-1} + B_k U_k$$

 $P_k^- = A_k P_{k-1} A_k^T + Q_k$

Measurement update

$$K_{k} = P_{k}^{-} H_{k}^{T} (H_{k} P_{k}^{-} H_{k}^{T} + R_{k})^{-1}$$

$$X_{k} = X_{k}^{-} + K_{k} (Z_{k} - H_{k} X_{k}^{-})$$

$$P_{k} = P_{k}^{-} - K_{k} H_{k} P_{k}^{-}$$

機電系統原理與實驗一 ME5126 林沛群

Kalman Filter in Our Experiments -2

- Detailed models
 - The transition model (constant acceleration model)

$$A_k = \begin{bmatrix} 1 & \Delta t & \frac{1}{2} \Delta t^2 \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$$

Case 1, acceleration feedback

$$\begin{split} H_k &= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \\ K_k &= \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} (\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + R_k)^{-1} \\ &= \begin{bmatrix} P_{13} \\ P_{23} \\ P_{33} \end{bmatrix} \frac{1}{P_{33} + R_k} \quad \text{3x1, separately compensating disp., vel., and accel. states} \end{split}$$

Kalman Filter in Our Experiments -3

Case 2, position feedback

$$H_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
 $K_k = \begin{bmatrix} P_{11} \\ P_{21} \\ P_{31} \end{bmatrix} \frac{1}{P_{11} + R_k}$

Case 3, position and acceleration feedback

$$\begin{split} H_k &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ K_k &= \begin{bmatrix} \vdots \\ \vdots \\ R_{k1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} (\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ R_{k1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} R_{k1} & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} R_{k1} & 0 \\ 0 & R_{k2} \end{bmatrix})^{-1} \\ &= \begin{bmatrix} P_{11} & P_{13} \\ P_{21} & P_{23} \\ P_{31} & P_{33} \end{bmatrix} (\begin{bmatrix} P_{11} + R_{k1} & P_{13} \\ P_{31} & P_{33} + R_{k2} \end{bmatrix})^{-1} \\ &= \begin{bmatrix} P_{11} & P_{13} \\ P_{21} & P_{23} \\ P_{21} & P_{23} \\ P_{31} & P_{33} \end{bmatrix} \frac{\begin{bmatrix} P_{33} + R_{k2} & -P_{13} \\ -P_{31} & P_{11} + R_{k1} \end{bmatrix}}{(P_{11} + R_{k1})(P_{33} + R_{k2}) - P_{13}P_{31}} \end{split}$$

機電系統原理與實驗一 ME5126 林沛群

Kalman Filter in Our Experiments -4

Case 4, position and velocity feedback

$$H_k = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Questions?

機電系統原理與實驗 - ME5126 林沛群