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* Probability
|

o The probability

+ That the outcome of a discrete event (e.g., a coin flip) will favor a

particular event possible outcome favoring event A

p(4) =

Total number of possible outcomes

+ Of an outcome favoring either A or B
p(AUB) =p(4) +p(B)
o If the probability of two outcomes is independent
pr(AnB) =p(A)p(B)
+ Of outcome A given an occurrence of outcome B

p(ANB)

p(A|B) = > (B)

,conditionally probability
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* Random Variables -1
|

o A random variable

+ Usually written X, is a variable whose possible values are

numerical outcomes of a random phenomenon

+ Two types: Discrete and continuous

o Discrete random variables

+ One which may take on either a finite or at most a countably

infinite set of discrete values

+ Ex: The number of children in a family, the attendance at a cinema

o

* Random Variables -2
!

o Continuous random variables

+ One which takes on values that vary continuously within one or
more real intervals, and have a cumulative distribution function

(CDF) that is absolutely continuous

+ Having an uncountable infinite humber of possible values, all of
which have probability 0, though ranges of such values can have

nonzero probability
+ Are usually measurements

+ Ex: Height, weight, etc
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* Random Variables -3
|

o The probability distribution

+ Or probability function, or probability mass function

o The probability distribution of a discrete random
variable

+ Alist of probabilities associated with each of its possible

values

+ Ex: Arandom variable X may take k values, with the
probability that X = X; defined to be P(X = X;) = p;, the
probabilities p; must satisfy the following

0<p;<1foreachi

prtpzt+tpe=1 ‘
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* Random Variables -4
!

o A cumulative distribution function

+ Giving the probability that the random variable X is less than or

equal to x, for every value x

+ Found by summing up the probabilities (for a discrete random

variable)




* Random Variables -5
|

e ExX: X

Probability 0.1

Probability distribution Cumulative distribution

o The probability of X equal to 2 or 3
pX=2UX=3)=pX=2)+pX=3)=03+04=0.7

o The probability that X is greater than 1

p(X>1)=1-p(X=1)=1-01=09
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* Random Variables -6
!

o The probability distribution of a continuous

random variable

+ Not defined at specific values; defined over an interval of

values, and is represented by an integral

+ Ex: Arandom variable X may take all values over an
interval of real numbers

o The probability that X is in the set of outcomes A, p(4), is
defined to be the area above A and under a curve (i.e.,

known as a density curve), which must satisfy the following
Vx,p(x) =0

[p(x)dx =1
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* Random Variables -7

+ Ex: Uniform distribution
o An interval of numbers (a,b) has a continuous distribution
o Having an equal probability of being observed

o Ex:intervals, (4,5), (2,6), (5,5.5), (3,5)
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p(X<3UX=25=pX<3)+pX=5)

=(3-2)*x0254+(6—-5)*0.25=0.5
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* Random Variables -8

+ Ex: Normal (or Gaussian or Gauss or Laplace-Gauss ) distribution

o Having a bell-shaped density curve described by its mean u and

standard deviation o

o Density curve: Symmetrical, centered about its mean, with its spread

determined by its standard deviation

1 e _%(%)2

2 _

X~N(u,o°) p(x) = ——

oV2m

o Standard normal distribution
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* Random Variables -8
|

o Formulation

mean X =u = E[X]

variance X = 0% = Var(X) = E[(X — u)?]

E[(X — E[X])?] = E[X? — 2XE[X] + E[X]?]
E[X?] — 2E[X]E[X] + E[X]?
E[X2] — E[X]?
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™  Random Walk -1
|

o Description

+ A path that consists of a succession of random steps on some

mathematical space such as the integers

+ Most often referred to a special category of Markov chains or

Markov processes

o A process for which predictions can be made regarding future
outcomes based solely on its present state and--most importantly--
such predictions are just as good as the ones that could be made
knowing the process's full history

+ Itis common to model the dynamics of the state as a Markov

random walk in the highest estimated time derivatives, with zero-

mean normally-distributed increments
12 ‘




™  Random Walk -2
|

o Formulation

X[k] = X[k — 1] + e[k] e[k]~N(0,5?)
Previous state
X[kl = (X[k — 2] + e[k]) + e[k] = -+ = X[0] + X}, e[K]

mean = E[X[k]] = E[X[0] + X%_, e[K]]
= E[X[0]] + E[X¥_, e[k]]
= X[0] + X¥_, E[e[k]]
= X[0] + 0 = X[0]
variance = Var(X) = E [(X k] — E[X[k] ])2] [k]%] — E[X[k]]?
= E[(X[0] + X e[k])(X[0] + X e[k])] — E[X[ 11°
= E[X[0]* + 2X[0] X e[k] + X e[k] X e[k]] — E[X[0]]*
= E[X[0]?] + 2X[0] X E[e[k]] + X X E[e[k]e[k]] — E[X[0]]?

=k02 =0 o? [=] 2 2
=10 ixj 20 Tk
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* Discrete Constant Velocity Process -1
1

o Formulation
x(t+ At) = x(t) + At v(t)
v(t+At) =v(t) + 1 n~N (0, Ato;2), scalar representation

The velocity v(t) wanders away from v(0)
with variance proportional to to?

x(t+A)] 11 Aty [x()
[v(t raol=lo [v(t) K
= A(At) [x(t) 1~N (0, Q(At)), matrix representation

Q(at) = [g Atoaﬁ]

Random vector

x= [ -nem =] [ 5

n— E[AAD)X +n] = A(AOE[X] + E[n] = A(ADu =

1 At] [Mx]
X Propagating through one step

0 1l

=[] +ac ] = a7
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* Discrete Constant Velocity Process -2
|

J =  E[(AX +n)(AX + n)T] — E[AX + n]E[AX +n]T
= E[(AX + ) (XTAT +n")] = (AE[X] + ElMD(E[X]"A" + E[n] )
= AE[XXT)AT + AE[XnT] + E[nXT]AT + E[nnT]
—AE[X]E[X]"A" — AE[X]E[n]" — EMIE[X]"A" — E[n]E[n] "
= A(E[XXT] = E[X]E[X]AT + E[nn"]
= A(At)ZA(At)T + Q(At)

1 At ] [ [ ]
0 va 2] LAt 0 Ato?
25, + AtZ‘ S
[ o R /|
vx Zvv Oy
— 4 At [szv + AtX,, szv]
2w Oy

Function of At; one iteration of At # two iterations of %
Reformulate the process in the continuous time domain

. [Hv . Zva Zvv]
E> K= [0 ] Zvv 05
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* Discrete Constant Velocity Process -3
1

o Continuous constant velocity process

Integration...

Uy +t
u(t) — ,ux #U:l
L K

B 3 2
x + 2ty + 25y, + =08 Zyy + tEy + 507
2(t) =

t2
Zey +tEp + 05 Sy + toyg

t o .
u->Au=u+ [ '“v] Mean update is |dent|ca_l
0 in the discrete and continuous cases

2t + t25,, tX,,

2—>A(t)2A(t)T—|—Q(t)=2+[ . ;

]+0§

t2

t3
Y E .
E> Q(t) = oy (2 Process noise
— t
2 16 ‘




* Discrete Constant Acceleration Process -1

|
o Formulation

X Ux z'xx va
<v> "’N(,U;Z) = N( Hol,[2vx 2w
a Ha Zax Zav
(1 At O]
A(A) = [0 1 At|+0(At?)
0 O 1.
0 O 0 7
Q(At) =10 0 0
0 0 to?
Uy
u— AAu = p+ At |Ug| + 0(At?)
0

2> AMOZAMDT +Q(t) = X + At
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Q
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Z‘U'IJ + Zxa

Zva

ZUU + Zxa

2204
Zaa

aa + 0(At?)
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* Discrete Constant Acceleration Process -2

2

Differentiation...
[y
= |Ha
| 0
. 225 2oyt 2xa 2Zya
2= Zvv + 2'xa zzva Zaa
2va 2aa 0'0%
Integration...
£2
My + Ly + ?.ua
u(t) = tiug
0
Z(t) —r

) t N
Epalt) = Epa+t-Egu+—+-0p
Loo(t) = zi.,;-—ze-Ei.,5+32-z,,,5+;a§
#2 £,
Exa(t) = Exa+t-Ina+-Loatg-0a
T t) = Eyp+it-(E 4T _3_(‘_\",. _i_\" +£.~—
* TeeTs g Tt Rty
I (t) = Zgxr+2t-Ipo+t7 (Tpp+Lxa) +7- L —ﬁ-z .
- 1 20
20 8 6
, | tr 3 t? .
Q(t) =05 |— — —| Process noise
8 3 2
3 t?
— =t
6 2 .
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* The Problem
|

o Why do we need Kalman Filter?

+ “Usually” system states cannot be measured directly

+ Want to have “optimal” state estimation

. Black Box
System :

Error Sources

External ———»] System
Controls

System State
(desired but not
known)

Observed Optimal

‘ ! Measurements Estimate of

Measuring ! - System State
Devices ' Estimator

[

Measurement
Error Sources
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* Kalman Filter
|

o Recursive data processing algorithm

+ Generates optimal estimate of desired quantities

given the set of measurements

+ For linear system and white Gaussian errors, Kalman
filter is “best” estimate based on all previous

measurements

+ Recursive: Doesn’t need to store all previous

measurements and reprocess all data each time step




* Conceptual Overview -1

o Example

+ Lost on the 1-dimensional line
+ Position — y(t)

o Assume Gaussian distributed measurements

.l

* Conceptual Overview -2
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+ Sextant Measurement at t;: Mean = z, and Variance = o,

AN

+ Optimal estimate of position is: y(t,) = z,
+ Variance of error in estimate: 62, (t,) = 62,4

+ Boat in same position at time t, - Predicted position is z,

.8




* Conceptual Overview -3

prediction ¥-(t,)

measurement z(t,)

50

+ So we have the prediction y-(t,)

+ GPS Measurement at t,: Mean = z, and Variance = c,,

L
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90

100

+ Need to correct the prediction due to measurement to get y(t,)

+ Closer to more trusted measurement — linear interpolation?

23

* Conceptual Overview -4

+ Corrected mean is the new optimal estimate of position

prediction -(t,)
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estimate Y(t,)

<—— corrected optimal

measurement z(t,)
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+ New variance is smaller than either of the previous two variances

24




* Conceptual Overview -5
|

o Lesson so far

Make prediction based on previous data - y-, 6

Take measurement — z,, o,

v

Optimal estimate (y) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1 — Kalman Gain)

-5

* Conceptual Overview -6
1

0.16
0.14} 3 y(t)
o Naive Prediction

0.12 y(ts)

/
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0 I R _{ [ T | | I ]
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+ Attime t;, boat moves with velocity dy/dt=u
+ Naive approach: Shift probability to the right to predict

+ This would work if we knew the velocity exactly (perfect model)

-8




* Conceptual Overview -7

0.16 -

0.14 |-
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Naive Prediction
y(ts)

‘J‘ XL ?(tZ)

+ Better to assume imperfect model by adding Gaussian noise

o dy/dt=u+w

30 40 50 60 70 8 90 100

+ Distribution for prediction moves and spreads out
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* Conceptual Overview -8

0.16 -

0.14 -

0.12+

0.1+

0.08 -

0.06 -

0.04 -

0.02 +

0 1

Prediction y-(t;)

Corrected optimal estimate y(t;)

Measurement z(t;)

+ Now we take a measurement at t;

+ Need to once again correct the prediction

+ Same as before
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* Conceptual Overview -9
|

o The procedure

+ Initial conditions (y,_, and 6, 4)
+ Prediction (y, o)

o Use initial conditions and model (eg. constant velocity) to make

prediction
¢ Measurement (z)
o Take measurement
+ Correction (¥, 6,)

o Use measurement to correct prediction by ‘blending’ prediction and

-8

residual — always a case of merging only two Gaussians

o Optimal estimate with smaller variance

* Theoretical Basis -1
!

o Process to be estimated
Yi = Ay, 4 + Bu, + w, 4 Process Noise (w) with covariance Q
z, = Hy, +v, Measurement Noise (v) with covariance R

o Kalman Filter

+ Predicted: y-, is estimate based on measurements at previous time-
steps V. = Ay, 4 + Bu, Predict (a priori) state estimation
P-.=AP,_,AT + Q Predict (a priori) covariance
+ Corrected: y, has additional information — the measurement at time k
Y=Vt Kz -H Yy )

K = P HT(HP-HT + R)"

Kalman gain
30 . ‘




‘ Theoretical Basis -2
|

o Whole procedure

& @

Correction (Measurement Update)

Prediction (Time Update)

(1) Compute the Kalman Gain

(1) Project the state ahead K = P HT(HP- HT + R)!
Y= AYir + Bug
(2) Update estimate with measurement z,
(2) Project the error covariance ahead
Y=V + K(z- HYy)
P«= AP AT + Q
(3) Update Error Covariance

Pk - (I - KH)P-k

—_—

31 =

‘ Blending Factor
1

o If we are sure about measurements

+ Measurement error covariance (R) decreases to zero

+ Kincreases and weights residual more heavily than prediction

o If we are sure about prediction
+ Prediction error covariance P, decreases to zero

+ K decreases and weights prediction more heavily than residual

32 l‘




* Kalman Filter in Our Experiments -1
|

o System model
Xy = AXyg—1 + BpUp + 0w, wr~N(0, Q)
Zk = Hka + Vi Uk"’N(O, Rk)

o Time Update
Xk_ = Aka—l + BkUk
Py = AxPr_14% + Qy

o Measurement update
K = Py H (H P Hig + Ri)™?
X = X + Kx(Zy — Hi X )
Pk = Pk_ - KkaPk_

-8

* Kalman Filter in Our Experiments -2
|

o Detailed models

+ The transition model (constant acceleration model)

1 At 1Ae?
A _ 2
k=10 1 At
0 0 1

+ Case 1, acceleration feedback

H.=[0 0 1]

Py3
P. 3x1, separately compensating disp., vel., and accel. states
2315
33 TRk

P33




* Kalman Filter in Our Experiments -3
|

+ Case 2, position feedback
P11

P21
P31

Hk = [1 0 0] Kk =

P11+Rk

+ Case 3, position and acceleration feedback

1 0 0
He=1p o 1
R 1 0
1 00 Ry1 ]_1
K, = Coe
o N [ R | R,
_ ?1 11313 (P11 + Ryq Py3 ]_1
I (- P34 P33 + Ry,
P31 P33
P11 Pi3] [P33+Rk2 —P13 ]
—|p j2 —P3q P11+Rgkq
21 23 (P11+Rk1)(P33+Rg2)—P13P3q
P31 P33

* Kalman Filter in Our Experiments -4
|

+ Case 4, position and velocity feedback

e=lo 1 ol




! The End

o Questions?
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